Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 13: 1037115, 2022.
Article in English | MEDLINE | ID: covidwho-2278618

ABSTRACT

Background: Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16's high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods: Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results: Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022; sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions: Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar-blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Sepsis , Humans , Biomarkers , Blood Proteins/metabolism , Case-Control Studies , Communicable Diseases/metabolism , Epithelial Cells/metabolism , Research Report , SARS-CoV-2 , Sepsis/metabolism , Uteroglobin/metabolism
2.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: covidwho-2196020

ABSTRACT

In patients with severe #COVID19, increased levels of autoantibodies against PAR1 were found. These might serve as allosteric agonists of PAR1 on endothelial cells and platelets, and thus might contribute to the pathogenesis of microthrombosis in COVID-19. https://bit.ly/3pqM9Vv.

3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2092943

ABSTRACT

Background Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16’s high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022;sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar−blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.

4.
ERJ open research ; 2022.
Article in English | EuropePMC | ID: covidwho-2073889

ABSTRACT

Immune perturbation is a hallmark of Coronavirus Disease 2019 (COVID-19) with ambiguous roles of various immune cell compartments. Plasma cells, responsible for antibody production, have a two-pronged response while mounting an immune defence with 1) physiological immune response producing neutralizing antibodies against protein structures of SARS-CoV-2 and 2) potentially deleterious autoantibody generation. Growing evidence hints towards broad activation of plasma cells and the presence of pathologic autoantibodies (abs) that mediate immune perturbation in acute COVID-19 [1]. Recently, a systematic screening for abs confirmed induction of diverse functional abs in SARS-CoV-2 infection, targeting several immunomodulatory proteins, including cytokines/chemokines and their respective G-protein coupled receptors (GPCR) [1]. Abs against GPCR act as agonistic and allosteric receptor modulators and are linked to chronic inflammatory diseases [2] and, as we recently demonstrated, disease severity in acute COVID-19 [3].

6.
Immunity ; 53(6): 1258-1271.e5, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-988080

ABSTRACT

CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, T-Cell/metabolism , Rhinovirus/immunology , SARS-CoV-2/immunology , Antigens, Viral/immunology , Cells, Cultured , Cross Reactions , Disease Progression , Environmental Exposure , Humans , Immunologic Memory , Lymphocyte Activation , Protein Binding , Severity of Illness Index , T-Cell Antigen Receptor Specificity
SELECTION OF CITATIONS
SEARCH DETAIL